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Abstract 

The next phase of the unmanned ground vehicle development  sponsored  by OSD calls 

for intelligent velocity control to support cross-country  driving  speeds of 10 mph by day 

and 5 mph by night. To prevent vehicle damage at these speeds,  rough terrain must be 

anticipated before inertial sensors on board have  a  chance  to  sense  it.  Using  stereo range 

data collected in front of the vehicle along projected wheel tracks as input  to  a dynamic 

vehicle model,  we  develop  a  look  ahead velocity control  scheme which limits vehicle 

velocities to levels that keep the dynamic response of this model within given 

acceleration bounds. 

1.0 Introduction 

In order  for high-speed autonomous  cross-country  vehicles  to  drive at terrain 

appropriate speeds, they must have the ability to  understand  the  dynamic  effects of the 

upcoming ground surface on their  systems.  Previous  designs  have relied upon either 

onboard inertial sensors  or  fixed suspension vehicle models.  These  approaches are 

effective at low speeds but at higher speeds are akin to driving  blindfolded. What is 

needed to  enable  fast  cross-country  driving speeds is the human like ability to both sense 

the current vehicle condition and accurately interpret the vehicle  response  to upcoming 

terrain. 

To enable  this  behavior, we focus on the  development of a  computationally  fast 

vision based scheme  for  computing terrain appropriate velocity commands  from  a 
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dynamic  suspension  model.  This model leads to a  quadratic  equation  for  estimating 

terrain appropriate  velocity  commands  whose  coefficients  depend on the  upcoming 

vertical  road  curvature.  These  coefficients  are  computed  efficiently by taking  advantage 

of the  fact  that  the  linear  equation  for  the  vertical  road  curvature,  based on a  cubic  spline 

fit to the  stereo  range  data,  admits  a  Cholesky  decomposition.  This  approach  makes  real 

time use of dynamic  suspension  models  for  velocity  control  possible. 

This  paper  is  divided  into  three main sections. In the  first, we derive  a  quadratic 

equation  for  velocity  control  assuming  that  the  road  surface  shape  beneath  the  wheels  is 

known. In the  second, we discuss how the  road  surface  shape  is  estimated  from  stereo 

range  data using cubic  spline  approximations  along  anticipated  wheel  tracks.  Finally, we 

show some  field  results  concerning  the  velocity  control of a  roboticized HMMWV at the 

Jet  Propulsion  Laboratory. 

2.0 Terrain Dependent  Velocity Equation 

To  control  vehicle  velocity and limit  the  forces  imposed on the  vehicle  while  driving 

over  rough  terrain,  a  relationship  between  the  vehicle’s  forward  velocity and vertical 

accelerations  is  needed.  One of the most basic ways to link  these  quantities  is via the 

quarter  vehicle  model shown in figure 1. 
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Figure 1 



This model approximately  describes the dynamic motion of a  quarter vehicle suspension 

system where M ,  K ,  C, z ,  and z ,  are the quarter vehicle mass,  the  effective suspension 

spring  constant,  the  effective suspension damping,  and  the  displacements  from 

equilibrium of the  mass M and tire axle.  The differential equation  describing the motion 

of this system is well know 

It is  clear  from  this  equation that if the relative displacement and its  derivative  are  known, 

the vertical acceleration of the vehicle can be computed.  Thus  the  following derivation 

will focus on solving  for  the relative displacement and  its  derivative. 

If we subtract M - d 2 Z T  from both sides of equation (2.1) we can  write 
dt 

d 2 r  C dr K d 2 h  
dt2 M dt M dt2 
-+-.."+-r=- 

where the relative  displacement,  r, and the  road height, h, are given by r = z - z,, h = -z, . 

We can solve  this  equation  for the relative displacement  and  its  derivative, by rewriting it 

as a first order  equation using x, = r ,  x2 = dr I dt , 

" dx, d x 2  K C d 2h x2 = 0 and - + - x x ,   + - x ,  =- 
dt dt M M dt 

Or in matrix notation, X +  Ax = [G] d 2 h  where A = [: K 2 1 , .  =[::), which has the 
" 

solution x ( t )  = + z . If we concern ourselves  only with the  effects of 

surface  forcing on the vehicle ignoring  initial  conditions, we have 



z . This solution assumes that we know the  road  forcing as a 
0 

function of time. However, in the  field, the road  forcing is computed not as a function of 

time but of distance.  Changing variables from time, t, to distance, s, and  assuming  a 

constant vehicle velocity, U,  we can rewrite the solution to  our  system as 

x(1) = U j e u  [$)s where h(t)  = H ( s ( t ) )  and we used the  chain  rule  to  deduce 

that the  second  derivative with respect to time can be written as 7 - 

4 s - 1 )  

0 

d 2 W  - u 2  __ d 2 H  
dt ds 

The solution of this equation is  found by making several approximations.  First, since 

the range  data  discrete, we will only look for solutions  where there is  data. i.e. 

x,  = ~ ~ e ~ ( " - " ) [ $  ). To approximate this equation, we assume that the time, 

Al, / U  , to travel between range data  points  is  small, allowing us to  approximate  the 

matrix exponential  and write 

A1 A 
U 

1" 

x ,  = ( Z - L ) X , - ~ + U J  
l"-l 

which is  a  difference  equation of the form x ,  = a,+ + p ,  where 

The  exact solution of this difference equation can be found  by  inspection and is 

k=l  j=k+l  

velocity U. However,  is we consider only the two most significant  terms, we get 

the  simplified  approximate solution x ,  = anPn-, + p ,  . Substituting  for a, p and A, the 
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solution may finally be written as x ,  = U M  
AI K C z  
U M  M 

Recall that equation (2.1) implies that the vehicle vertical acceleration is 

a = - - y - -- where r and dr/dt are the  first and second  components of x , .  

Substituting these components  into equation (2.1) and collecting  terms  implies that the 

K C dr 
M M dt  

A1 
U 

vehicle vertical acceleration is given by a = c2f," - Uc, f," - -"c3f[ where 

C K c 2  K C  C 3  
' M  = - 7 c 2 =  M M 

- - (-) , and c3 = -- - (-) . 
M M  M 

To develop  a  driving  strategy so that the vertical acceleration remains within the 

we choose U so that 
A1 
U I czf," I + I Uc1f1" I + I " ~ 3 f 3 "  Is a M A X  * 

This equation would seem  to be impossible to satisfy for  small U but, when one recalls 

that AZ, / U  = At, , this apparent difficulty goes away.  Likewise,  the vehicle vertical 

acceleration will remain within bounds if we choose U such that 

where fimaX = max I i." I,AZ,,, = max I Al, I .  Equation  (2.3)  implies 
n n 

U2clfimax +U(l c2 1 f,""" - a m a x ) + A l m a x c 3 f y  1 0  

and, since the  coefficient of U is positive, all  of the velocities between the roots of 



satisfy  inequality (2.3). The  largest  possible  speed, which we use  as  a  velcoity  command, 

would therefore be the  maximum of the  two  roots of equation (2.4). 

Road Surface  Estimation 

As we saw in the  last  section,  the  critical  information  needed to estimate how 

upcoming  terrain will effect  vehicle  acceleration is the  second  derivative of the road 

height. As we will see  in  this  section,  this  information  is an intermediate  byproduct of 

cubic  spline  estimation of the  road  surface  making it unnecessary  to  actually  compute  the 

functional  shape of the  road  itself. In this  section we will discuss how the  second 

derivatives of the  road  surface  along  the  anticipated  wheel  tracks of the  vehicle  are 

estimated. 

The  anticipated  wheel  tracks  are  assumed to be parallel to the  two  dimensional path 

generated by the  onboard path planner, with stereo  range  data  projected  onto them 

malung  them  three  dimensional.  The  road  roughness  component  is  extracted  from  these 

paths by removing  the  low  frequency  component of the  terrain.  Once  the  road  surface 

roughness  along  the wheel paths has been estimated,  this  data is transformed  into  road 

surface  roughness  as  a  function of distance  traveled which is approximated by cubic 

splines.  The  cubic  spline  derivation  is  standard and follows [4] but is summarized  here to 

show its  relationship to the  proposed  efficient  numerical  solution of the  resulting  spline 

equation. 

Since we are  using  cubic  splines,  their  second  derivative  must be linear  and  for 
distances Z E [ Z , - ~  , Z , j ]  can be written as 

where M ,  are  the  values of the  spline  second  derivative at the  knots I , ,  . The  entire  second 



derivative of the spline  function  for k [ Z ,  , I ,  ] can be written as 

S"(1) = gT(l)M where M T  = (Ml ,M 2 , . . . , M , )  and g'(1) = (g , ( l ) , g , ( l ) , . . . , g , (~ ) )  

where gi ( 1 )  are the  functions necessary to form the spline  and  have  the form 

Integrating S"(1) twice, and requiring that S(1) be continuous at the  knots,  leads  to the 
equation 

S(l)=-Mj-l[(li - l ) 3 / A l j ] + - M j [ ( l - l j ~ l ) 3 / A l j ] + - [ 6 y i ~ ~  -Mi-l(Ali)2][(li  -l)/Al,l+ 
1 1 1 
6 6 6 
1 
- [ 6 y .  -Mj(Ali)2][(l  -lj)/Alj] 
6 

Further, by  requiring that S ' ( x )  is  continuous at the knots,  we get the  relationship 

or in matrix notation 

where 

B =  

l o  

BM = Dy 

. . .  

1 1  1 
All A12 A 4  

-(-+-) - 0 ... 0 

1 1 1 1 - 
A 4  

-(-+-) - 
A12  A13 A 4  

1 0 
Ab-1 

1 1 1 1 
0 - (- +-) - 

4 - 1  Ab-I  Al, Al, 



and y T  = [yo  y1 . . .  y ,  ] is the vector of spline  ordinates. 

The  above  relationship (3.1) between the spline  ordinates,  spline  second  derivatives and 

knot spacing holds for all cubic splines. However,  we would like to use a smoothing 

spline which allow us to weight each point relative to its  importance. On way to 

formulate  the solution of this problem  is  to  look  for  splines  satisfying (3.1) that minimize 

data misfit and variations in spline curvature. Mathematically, this can be done by 

minimizing the squared  sum of the  spline function and  data  misfit.  i.e. 

where A = diag [A, A, . . .  A, ] is  a diagonal weighting matrix and 

f = bl, f ,  , . . .  , f ,  ] is the vector of data  ordinates.  This  equation  is rewritten using 

(3.1) to get 
K = y T D T  ( B " ) T J  g(Z)g(Z)TdZ B"Dy + ( y  - f ) ' A ( y  - f >  

Differentiating with respect to y , using the fact that ~g(Z)g(Z)TdZ = B [4] and  equating 

to zero gives 
D T ( B " ) T D y + A ( ~ - f ) = O  

Substituting the relationship  (3.1)  into this equation,  simplifies it finally to the  equation 

that must be solved  for  the  smoothing  spline  second  derivatives 

(DA"DT + B)M = Of (3.2) 

Standard texts on numerical analysis explain that any positive  definite symmetric 

matrix admits  a  Cholesky decomposition without row exchanges [5]. i.e. if P is  a positive 

definite  symmetric  matrix, P can be written as P = LLT where L is a  lower triangular 

matrix.  This allows the system Px = b to solved by solving  the  backwards  and  forwards 



substitutions, Lz = b and LTx = z . To show that DA"DT + B has a Cholesky 

decomposition, we note that DA"DT + B is symmetric by  observation and to 

demonstrate that it is positive definite, we must show that xT (DA"DT + B ) x  > 0 for all 

x # 0 .  Since B is  symmetric,  diagonally  dominant  and has positive diagonal elements, it 

is positive definite [6]. i.e. xTBx > 0 for all x f 0 .  xT (DA"DT)x  is at least positive 

since xT (DA"DT)x = ( D T ~ ) T A - l ( D T ~ )  2 0 for all x f 0 by  inspection.  Thus, 

DA"DT + B is  positive definite, symmetric  and  therefore  admits  a Cholesky 

decomposition without row exchanges.  Further,  since DA"DT + B is banded, with two 

nonzero off diagonals  above  and below the main diagonal, L is also banded further 

reducing  computation. 

Thus, we are able to solve (3.2) for the second derivatives on the  spline  fit without 

solving  for the spline  itself, which additionally reduces  computation.  These  second 

derivatives are used directly to compute  the  coefficients of the  quadratic  equation for 

velocity control discussed in the previous section. 

4.0 Application 

At Aberdeen Proving  Grounds  (APG), wooden 4x4 boards and  rocks were run over at 

two and five miles per hour  by  a HMMWV while gathering  range  images  and vehicle 

state. The large rock  to  the  far right and in the far  distance in the  image below were not 

part of this test and were avoided. 



Vertical accelerations several meters in front of the  vehicle  were  predicted  from  the 

quarter  vehicle  dynamics  model  and  compared with inertial  accelerations  measured when 

the  vehicle  traversed  the  same  terrain. The following  plot  shows  the  results of hitting first 

the  boards  and then the rocks. 

Predicted  and  Measured Wheel Track 
Accelerations 
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As seen in the  above  graph,  the first spike in the  inertial  acceleration when the  front 

wheels of the  vehicle hit the 4x4's is not predicted.  This  is  due to  the  fact  that  the  quarter 

vehicle model  is  situated at the rear wheels.  However,  the  next  positive  spike when the 



rear  wheels hit the 4x4's is well modeled in both location  and  amplitude.  The  downward 

spike  is not well modeled  since  the  camera  cannot  see  behind  the 4x4's. For  velocity 

control  purposes,  the  accelerations on the  far  side of the  bumps  can be assumed  to be of 

the  approximately  same  magnitude as those  accelerations  produced on the  leading  edge 

of the bump.  Thus,  accelerations  from  the  leading  edges of bumps  provide  a  good 

indicator of terrain  roughness.  Finally,  the HMMWV ran over  the  rocks similar. model 

results  showing an un-modeled  first  spike when the  front  wheels  hit  the  rocks  followed 

by a well modeled  acceleration  spike when the  rear  wheels hit the  rocks. 

The  driving  strategy  must  slow  the  vehicle  for  rough  terrain  and  keep  the  velocity low 

until the rough area  is  cleared.  The  strategy used to accomplish  this  behavior was to save 

a  short  history of velocity  estimates  corresponding to the  terrain  from  the  vehicle's 

current  position  to  a  sufficient  reaction  distance  and  then  to  command  a  velocity  that  is 

the  minimum of these  estimates.  This  has  the  effect of slowing  the  vehicle  for rough 

terrain and  preventing  the  vehicle  from  speeding up until  it  is  safe. 

To test  this  strategy  in  the  field, we drove  the JPL H " W V  over  cardboard bumps 

on a  dirt  road  during  the  day  and  night  collecting  range  data with CCD  cameras by day 

and  Amber  Radiance I infrared  cameras by night.  These  bumps  were  approximately 12 

inches high and spaced at about 1 meter  intervals  for  10  meters. We set the  maximum 

driving  speed  to  12 mph and allowed  the  vehicle to control  its  velocity.  During  these 

tests,  the  velocity  commands  were  derived by repeatedly  solving  equation  (2.2) with 

higher  and  higher  velocities until the  preset  acceleration  limit was exceeded.  This was 

done  because  the  technique  for  direct  velocity  estimation  developed in equation  (2.4) had 

not yet been developed. 



In the  following plot we  show,  the  maximum  safe  driving  speed  estimated  by  the 

vehicle,  the  vehicle  response  and  the  commanded  velocity. We  see that the vehicle 

performed  exactly as desired when it  determined  that  running  over  the bumps at 

maximum  speed  was  unsafe  and that it  was  necessary to slow  down in order to proceed. 

This  control  strategy  also  caused  the vehicle to  keep  going  slow  as  it  traversed  the 

bumps, in spite of seeing  clear  road ahead. When  the  vehicle  was  finally  clear of the 

bumps,  it  sped  up  as  desired. 

20 

15 

c 
P 
E 10 
2 ,̂ 
Y 
.4 
0 
0 - 
9 

5 

0 

I I I I I I I 

Bumpy Road Terrain Adaptive Velocity Commands  and  Vehicle Response 

1 

0 20 40 60 80 100  120 140 
Down Range Distance (m) 

Conclusion 

A technique  was  demonstrated  for  controlling  the  driving  speed of an autonomous 

vehicle based on look  ahead  range  and a vehicle  dynamics  model. This method  extracted 

the  road height from  range  images  and  used  it to  force a quarter  vehicle  model. An 

equation  was  derived  for  the  maximum  safe  driving  speed  that  keeps  the model 



accelerations within limits.  Finally,  a velocity control  strategy  was  devised which 

commands a driving  speed that is the minimum  over  a  short  velocity  history of the 

maximum  possible  driving  speeds.  This  technique  slowed the JPL test vehicle  for rough 

terrain and sped up only  after  the vehicle was  on smooth  ground. In future  work,  texture 

or  color  could be added to determine if objects such as bushes  or  clumps of grass can  be 

driven over. Also, the  dynamic model could be extended to include  pitch, roll and tire 

response if more  fidelity  is  required. 
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